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Large- and small-scale subsidence coexist in the world’s coastal cities due to extensive land reclamation and 
fast urbanization. Synthetic aperture radar (SAR) images are typically limited by either low resolution or 
small coverage, making them ineffective for fully monitoring displacement in coastal areas. In this research, 
a machine learning-based method is developed to investigate the reclaimed land subsidence based on multi-

satellite SAR data integration. The proposed method requires at least a pair of SAR images from complementary 
tracks. First, the line-of-sight (LOS) displacements are recovered in connection to a series of extremely coherent 
points based on the differential interferometry synthetic aperture radar (DInSAR). These LOS displacements 
are then converted into their vertical component, geocoded to a common grid, and simultaneously integrated 
(i.e., pixel-by-pixel) based on Support Vector Regression (SVR). The proposed methodology does not necessitate 
the simultaneous processing of huge DInSAR interferogram sequences. The experiments include high-resolution 
COSMO-SkyMed (CSK) and TerraSAR-X (TSX) images, as well as a small monitoring cycle Sentinel-1 (S1) images 
of reclaimed territories near Hong Kong Kowloon City. The overall average annual displacement (AAD) ranges 
from -12.86 to 11.63 mm/year derived from 2008 to 2019. The evaluation metrics including RMSE, MAE, 
correlation coefficient, and R-squared are used to investigate the impact of SVR in the integration of SAR 
datasets. Based on these evaluation metrics, SVR is superior in terms of integration performance, accuracy, and 
generalization ability. Thus, the proposed method has potentially performed multi-satellite SAR data integration.
1. Introduction

In the world’s fast-growing mega-cities, ground deformation has in-

creasingly become one of the most common risks to life and property. 
Artificial activities such as land reclamation, groundwater exploitation, 
and underground construction are associated with rapid city develop-

ment, all of which are potential causes of ground deformation (Wu 
et al., 2021). Initially, traditional field procedures (e.g., leveling and 
GNSS) have been utilized for deformation monitoring. Notwithstand-

ing, the high reliability of these methods, their main drawbacks are 
represented by low spatial resolution in large-scale projects, relatively 
high cost, and lack of manpower. On the contrary, advanced remote 
sensing techniques particularly differential synthetic aperture radar in-

terferometry (DInSAR) monitor deformation at large-spatial coverage at 
high levels of accuracy (Gabriel et al., 1989).

Nowadays, there are different bands of available SAR data such 
as C-band (SIR-C, ERS, ENVISAT, RADARSAT-1/2, and Sentinel-1), 
X-band (TerraSAR-X and COSMO-SkyMed), L-band (JERS, ALOS-
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1/2, TerraSAR-L, and DESDynl), and P-band (BIOMASS), have been 
launched (Brcic et al., 2010). Because the multi-band SAR datasets 
differ in maximum detection gradient, degree of decorrelation, noise re-

jection capability, etc., they enable depth interpretation of the surface 
deformation (Baran et al., 2005). Accordingly, the integration of mul-

tiple operational bands, polarimetric channels, and orbit orientations 
will enrich the gained information (Euillades et al., 2021). For instance, 
(Pepe et al., 2016) has utilized a time-dependent geotechnical model of 
the observed deformation to solve a non-linear optimization problem 
based on the Levenberg-Marquardt method. On the one hand, sev-

eral approaches have proposed to retrieve the three-dimensional (3D) 
components of the deformation velocity based on multi-sensor DInSAR 
(Gray, 2011; Gudmundsson et al., 2002; Hu et al., 2012, 2013; Wright 
et al., 2004). Lately, a few studies have proposed multi-satellite/multi-

angle SAR data combination for long-lasting 3D time-series of ground 
deformation (i.e., vertical, east-west, and north-south components) 
(Chang et al., 2018; Hu et al., 2013; Pepe et al., 2016; Samsonov and 
d’Oreye, 2012b). For example, (Pepe et al., 2015) combined radar LOS-
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projected time-series of deformation collected by several SAR platforms 
based on the minimal acceleration (MinA) technique. (Zhao et al., 2019) 
linked time-overlapped multi-satellite DInSAR deformation time-series 
over the area of the Eastern coast of Shanghai to produce a long-term 
displacement time series. (Derauw et al., 2020) proposed an automatic 
and unsupervised multidimensional time series (MasTer) toolbox based 
on the multidimensional small baseline subset (MSBAS) method (Sam-

sonov and d’Oreye, 2012a; Samsonov et al., 2017; Samsonov, 2019; 
Samsonov et al., 2020). Nowadays, a growing interest has been shown 
in the development of ML to gain useful insights from InSAR data. Their 
potential performance has been reported in various tasks including ob-

ject detection, classification of surface displacement, and despeckling 
(Chang et al., 2018). Therefore, ML algorithms are anticipated to be 
exploited to integrate SAR data acquired by the next generation of sen-

sors. These sensors hopefully have daily revisiting times (such as those 
theoretically provided by geosynchronous SAR systems) and could al-

low InSAR to be used in both the prevention and post-emergency phases 
of a disaster.

Accordingly, this paper introduces a novel framework for multi-

sensor SAR data integration. The proposed method exploits the ML 
algorithm namely multi-variable SVR. The main advantages of the pro-

posed framework include (1) mitigation of the issues related to pro-

cessing massive amounts of data in a timely manner, (2) reduction of 
processing hundreds of differential SAR interferograms simultaneously 
because it is a post-processing technique and (3) integration of multi-

satellite SAR data without extensive adjustment of hyper-parameters. 
The research contributions are summarized in:

• development a new DInSAR ML-based combination technique us-

ing SVR.

• comprehensive statistical analysis of the combined DInSAR prod-

ucts.

• providing a unique solution and it is anticipated to be more robust 
with less time-overlapping between multiple SAR datasets.

This paper is structured as follows: Section 2 presents the study site 
and dataset included in this study. Section 3 provides an overview of 
the research methodology. Next, the experiments and research findings 
with deep interpretation are presented in Section 4 and Section 5. Fi-

nally, the research conclusions are summarized in Section 6.

2. Materials

2.1. Study area

Kowloon peninsula is the study area of this research. It is the most 
populous district of Hong Kong, China (Qin and Perissin, 2015). Because 
the land in Hong Kong is scarce and valuable, the government has been 
reclaiming land from the sea to construct skyscrapers, ports, airports, 
etc., Monitoring the subsidence of reclaimed lands for a long time and 
with precision can help to avoid geological hazards and financial loss. 
Fig. 1 shows the location of the Kowloon district on the Hong Kong 
map.

Several stages of land reclamation from the sea have resulted in 
a significant expansion of the peninsula, as shown in Fig. 2. Most of 
the south and west reclamation was completed before 1904. By 1982, 
numerous other tiny portions along the main Tsim Sha Tsui shoreline 
had been reclaimed. Parts of Hung Hom Bay have been reclaimed since 
1994, and it was fully depleted by 2019. The Airport Core Programme 
created the West Kowloon Reclamation, which was substantially com-

pleted by 1995. Long periods of subsidence are common on reclaimed 
land, which can compromise building structures and subterranean in-

frastructures like water and sewage systems. In Hong Kong, ground 
deformation has long been an issue, particularly on the reclaimed terri-
2

tory from the sea (Chen et al., 2010).
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Fig. 1. Location of Kowloon area framed by the red color.

Fig. 2. Geological map and reclamation land within the study area.

Fig. 3. SAR data coverage for the study area.

2.2. Dataset

Multi-satellite SAR datasets over the Kowloon area were collected, 
as described in Table 1. To carry out an extensive examination of the 
mechanisms of deformation over the Kowloon Peninsula, three separate 
sets of SAR data, each with a distinct band of frequency, were chosen. 
Fig. 3 illustrates the coverage of the SAR datasets. It is worth noting 
that the three sets of SAR data are clearly time-overlapping.

3. Methodology

The proposed methodology combines several multi-sensor DInSAR 
data to generate long-term ground deformation maps using SVR. Ver-
tical displacements are computed individually for all datasets based on 
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Table 1

Characteristics of the selected SAR data.

Satellite TerraSAR-X (TSX) COSMO-SkyMed (CSK)
Sentinel-1 (Path_11)

Frame_67 Frame_68 Frame_69

Orbital Ascending Descending Ascending Ascending Ascending

Period 20081025−20170125 20160829−20190204 20151212−20160504 20160516−20170228 20150709−20151013

No. of image 130 16 8 18 9

Polarization VV HH VV VV VV

Incidence angle 37◦ 38◦ 37.5◦ 37.5◦ 37.5◦

Band X X C C C

Wavelength (cm) 3.1 3.6 5.6 5.6 5.6
the DInSAR technique. After that, these displacements are integrated 
based on the SVR algorithm The following subsections explain the de-

tailed steps of the proposed methodology.

3.1. DInSAR processing

A set of 𝑚multiple-master small baseline interferograms was formed 
based on the three SAR datasets. A threshold of perpendicular and tem-

poral baselines was implied to reduce the occurrence of temporal and 
spatial phase decorrelation components in the generated interferograms 
and improve the coherence of the processed pixels’ phase quality. Data 
pre-processing for each SAR dataset is performed with GAMMA soft-

ware (Werner et al., 2000), which comprises SAR image extraction, 
co-registration, interferogram generation, and flat-earth phase and to-

pographical phase removal. Multi-looking in the range and azimuth 
directions, and phase filtering were carried out to suppress speckle noise 
and improve the signal-to-noise ratio. For phase unwrapping, the min-

imal cost flow network and Delaunay 3D are used, with a coherence 
threshold of 0.30. A linear empirical function is used to estimate the 
phase ramps induced by orbital errors and atmospheric delays. Until 
then, the residual topography is removed as well. After that, the at-

mospheric phase was filtered. Next, geocoding in the LOS direction 
with a 10-meter resolution is used. Finally, the displacement rate is 
calculated and mapped across the research area. All available displace-

ment values must initially be converted to vertical (subsidence or uplift) 
values before the proposed multi-band combination approaches can be 
implemented. For each well-processed point, LOS-projected ground dis-

placement 𝑑𝐿𝑂𝑆 generated via the DInSAR process is easily converted 
to vertical movements 𝑑𝑢 using the incidence angle 𝜃 such that:

𝑑𝑢 =
𝑑𝐿𝑂𝑆

cos𝜃
(1)

3.2. Multi-satellite SAR-ML based merging algorithm

SVR performed effectively in estimating real functions with great 
generalization and high predictive accuracy (Gupta et al., 2015). Con-

sequently, SVR has been adapted for multi-band vertical displacement 
integration.

3.2.1. Support vector regression

SVR is a statistical theory-based data mining method that is an ex-

tension of SVM for regression analysis. When given an input value, SVR 
searches for a function that can predict the continuous output value 
most accurately. SVR architecture is similar to artificial neural networks 
as shown in Fig. 4. Input and output layers are connected by a hidden 
layer that is self-computed using the input data. SVR maps the feature 
vectors of sample data into high dimensional space and the regression 
is employed based on the kernel function as depicted in Fig. 5.

Let 𝑓 (𝑥) = 𝜔 × 𝑥 + 𝑏 be an SVR function that is defined by a coef-

ficient 𝜔, the input feature vector x; and the bias constant 𝑏 therefore, 
the most valuable regression function is obtained by creating a mini-
3

mization function as follows:
Fig. 4. SVR structure.

𝑚𝑖𝑛
1
2
𝜔𝑇𝜔+ 𝑐 1

𝑁

𝑁∑
𝑖=1
𝐿(𝑓 (𝑥𝑖), 𝑦𝑖) (2)

𝐿(𝑦) =

{
0, if |𝑓 (𝑥𝑖) − 𝑦𝑖| < 𝜖|𝑓 (𝑥𝑖) − 𝑦𝑖|− 𝜖, if |𝑓 (𝑥𝑖) − 𝑦𝑖| > 𝜖, (3)

where 𝑐 is the penalty factor, 𝑁 is the sample’s number, 𝑓 (𝑥𝑖) is the 
predicted value of the 𝑖𝑡ℎ feature vector, 𝑦𝑖 is the true value of 𝑖𝑡ℎ feature 
vector, 𝐿 is the linear insensitive loss function, and 𝜖 is the maximum 
deviation. The Lagrange equation and the Karush-Kuhu-Tucker con-

dition are employed to derive the dual mode of the SVR model and 
calculate the partial derivatives of the parameters (Duan et al., 2018). 
The final decision function is:

𝑓 (𝑥) =
𝑙∑
𝑖=1

(𝛼∗
𝑖
− 𝛼𝑖)𝐾(𝑥𝑖, 𝑥) + 𝑏, (4)

such that 𝑙 represents the amount of SVR machines; 𝛼𝑖 is the optimum 
solution; 𝐾 represents the kernel function in the nonlinear regression, 
𝐾(𝑥𝑖, 𝑥) = Φ(𝑥𝑖) ∗ Φ(𝑥𝑗 ). In order to effectively avoid the issue of di-

mensional explosion in a high-dimensional space, a better kernel func-

tion has been chosen and the output is transferred to a high-dimensional 
space by computing in a low-dimensional space. Radial basis function 
(RBF) was utilized because of its potential performance in nonlinear 
regression of engine response. It has high flexibility based on kernel 
function coefficient 𝛾 :

𝑘(𝑥𝑖, 𝑥𝑗 ) = 𝑒𝑥𝑝(−𝛾|𝑥𝑖 − 𝑥𝑗 |2), 𝛾 > 0 (5)

This paper utilized multiple independent variables SVR to integrate 
three sets of time-overlapped TSX, CSK, and S1 DInSAR vertical dis-

placement over common high-coherent points. The response parameter 
𝑦 = 𝑑1

𝑢
, 𝑑2
𝑢
, ..., 𝑑𝑚

𝑢
is the geocoded vertical ground displacement deter-

mined regarding a specific point from high-coherent points. The train-

ing set 𝑥 = (𝐶1, 𝑇 1), (𝐶2, 𝑇 2), ..., (𝐶𝑚, 𝑇𝑚) is the combined vector of all 
the two input process parameters (coherence value at each point in each 
interferogram (𝐶), and time span (𝑇 ) of each interferogram (in days)). 

SVR employs 𝑚 sets of input-output pairings and the training procedure 
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Fig. 5. Schematic diagram of the kernel trick.

Table 2

Perpendicular and temporal baselines threshold of the three SAR datasets.

Satellite TerraSAR-X (TSX) COSMO-SkyMed (CSK)
Sentinel-1 (Path_11)

Frame_67 Frame_68 Frame_69

Perpendicular baseline 150 1200 95 95 95

Temporal baseline 365 900 150 150 120
was carried out to obtain the ideal parameters. A combined multi-band 
displacement is then obtained using these parameters.

3.3. Evaluation metrics

Four metrics were utilized to evaluate the SVR model perfor-

mance in multi-band displacement integration the Root-Mean-Square 
Error 𝑅𝑀𝑆𝐸 =

√
1
𝑛

∑𝑛
𝑖=1(𝑦

𝑃
𝑖
− 𝑦𝑂
𝑖
)2, Mean Absolute Error 𝑀𝐴𝐸 =

1
𝑛

∑𝑛
𝑖=1 |𝑦𝑃𝑖 − 𝑦𝑂

𝑖
|2, Correlation Coefficient 𝑟 =

∑
(𝑦𝑂
𝑖
−𝑦𝑂)−(𝑦𝑃

𝑖
−𝑦𝑃 )√∑

(𝑦𝑂
𝑖
−𝑦𝑂)2−(𝑦𝑃

𝑖
−𝑦𝑃 )2

, R-

squared 𝑅2 where 𝑛 is the total number of observations 𝑦𝑂 or predic-

tions 𝑦𝑃 in the testing period. Also, 𝑦𝑂 and 𝑦𝑃 are the averages of the 
observed and predicted values, respectively.

4. Results

4.1. Interferogram generation

DInSAR technique was applied to C- and X-band SAR images, par-

ticularly, selected image pairs based on the perpendicular and temporal 
baseline threshold as shown in Table 2. Accordingly, 1180, 98, and 
181 interferograms were created from the TSX, CSK, and S1 datasets, 
respectively. Fig. 6 elucidates the configuration of the baseline of inter-

ferometric networks for individual datasets.

Across the entire monitored period, the small baselines describing 
the accessible scenes exhibited good density and redundancy, and all 
the scenes were used for DInSAR analysis. The image pairs were co-

registered and the phase difference is computed to generate DInSAR. 
Then, A DEM from SRTM was used for topographic phase removal. A 
complex multi-look operation was then independently carried out to 
mitigate the effects of the decorrelation noise (with 5 looks in azimuth 
and range directions for the TSX, with 5 looks in azimuth, and 4 looks 
in range direction for the CSX, and with 10 looks in azimuth, and 2 
looks in range for the S1). Additionally, noise filtering was employed 
for single interferograms. Next, phase unwrapping was performed us-

ing the extended minimum cost Flow algorithm. It is worth noting that 
incoherent and sea areas were automatically masked off because only 
the set of coherent pixels common to all interferograms was used for 
phase unwrapping. Moreover, the unwrapped phase was calibrated to a 
unique ground reference point that was considered to be stable. Finally, 
the unwrapped phase was converted into LOS displacements and a map 
4

of the average LOS deformation velocity was generated from each SAR 
dataset. LOS-projected deformation datasets were transformed to a ver-

tical (up-down) direction before integration using Equation (1).

4.2. Vertical displacement

The vertical displacement velocities were displayed on a grid of 
highly coherent pixels that were common in the three datasets, de-

scribed as those with a temporal coherence larger than 0.8, to assure 
accurate results. The number of selected coherent points was different 
for all datasets because the highest observing range is directly propor-

tional to the radar wavelength. Accordingly, a larger number of points 
was identified for Sentinel-1 data. C-band radar wave, (longer wave-

length than the X-band) has a superior probability of detecting large-

gradient deformation. Fig. 7 demonstrates that from 2008 to 2017, the 
AAD varies between -12.38 and 11.12 mm/year. Fig. 8 8a, b, and c, re-

spectively, elucidate the AAD in the vertical direction for the X-band 
TSX, X-band CSK, and C-band Sentinel-1 datasets before integration. 
The selected high-coherence points gradually turn from blue to red, 
signaling an increase in subsidence values. The three datasets were re-

sampled to the same resolution in order to make them comparable and 
consistent for upcoming processing.

According to TSX data from 2008 to 2017, the ground displace-

ment across Kowloon ranges from -9.72 to 6.25 mm/year. Moreover, a 
maximum subsidence rate of -8.49 mm/year is depicted on the CSK dis-

placement map from 2016 to 2019 as shown in Fig. 8b. The AAD ranges 
from -9.19 to 9.82 mm/year from 2015 to 2017, as demonstrated by a 
Sentinel-1 displacement map in Fig. 8c. The ground displacement is pri-

marily located along the top and western borders of the Kowloon in the 
three displacement maps. Due to the fact that a piece of the Kowloon 
Peninsula has been reclaimed from the sea, the non-reclamation re-

gion is utilized as the reference area (white rectangle in Fig. 8) for all 
datasets, and the reference point is identified at the highest coherence.

4.3. Fusion results of TSX, CSK, and S1 datasets

The integration results compensate for the shortcomings of indi-

vidual datasets because the map reflects both the TSX’s, CSK’s high 
resolution, and Sentinel-1’s enhanced observing capability. Positive val-

ues (blue) represent ground uplift, and negative values (red) present 
ground subsidence. Fig. 9 elucidates the integration results of the TSX, 
CSK, and Sentinel-1 data. The average annual velocity ranged from -
12.86 to 11.63 mm/year. The displacement behavior and magnitudes 
computed from the three datasets closely match previous research in 

this area (Wu et al., 2021).
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Fig. 6. Baseline configuration of TSX, CSK, and Sentinel-1A datasets.
Table 3

Performance of the SVR-based Inte-

gration model.

Evaluation Index (mm/year) value

𝑅𝑀𝑆𝐸 1.12

𝑀𝐴𝐸 0.88

Correlation coefficient (r) 0.97

R-squared 0.95

Standard deviation (STD) 0.69

4.3.1. SVR validation results

SVR integration results were validated according to the scheme de-

scribed in Section 3.3. 𝑅𝑀𝑆𝐸, 𝑀𝐴𝐸, correlation coefficient, and R-

squared are computed as summarized in Table 3. Fig. 10 elucidates the 
scatter map between AAD from stacking all interferograms of TSX, CSK, 
and S1 and the SVR-based integration model. It is found that the two 
5

datasets have a consistent deformation pattern.
According to the statistical evaluation parameters, the results 
demonstrated that the SVR soft computing model is superior in terms of 
integration performance, accuracy, and generalization capability. SVR 
thus offers potential in multi-satellite SAR data integration and related 
fields.

4.3.2. Cross validation results

First, TSX and Sentinel-1 SAR datasets were used for cross-validation 
as (Wu et al., 2021), which were obtained in ascending directions and 
have the same geometry. The displacement velocity maps of the two 
data over the Kowloon area from the same period (2015-2017) were 
extracted, before applying the proposed integration method. To vali-

date the derived displacement, the differences between the two datasets 
(Δ𝑑𝑇𝑆𝑋−𝑆1) were calculated as illustrated in Table 4 where the vertical 
displacement velocity maps are resampled into a common grid.

The normality of the distribution of the difference between the two 
dataset’s results is examined using a quantile-quantile (q-q) plot and 
histogram for ADD resulting from both datasets for the period 2015 to 

2017, as shown in Fig. 11 a and b, respectively.
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Fig. 7. AAD of Kowloon from 2008 to 2017 by stacking all multi-baseline inter-

ferograms of TSX, CSK, and S1 datasets.

Table 4

Difference between AAD obtained from TSX 
and S1.

Evaluation index (mm/year)
Δ𝑑𝑡𝑠𝑥−𝑠1

Pre Post

Mean 7.15 5.44

Median 6.05 4.87

STD 4.99 3.78

𝑅𝑀𝑆𝐸 8.72 6.62

Table 5

Cross-validation for each dataset before and after 
SVM-based integration.

Evaluation index/ Satellites TSX CSK S1

Mean 0.97 1.19 3.61

STD 0.71 1.1 3.28

Median 0.93 0.78 2.31

𝑅𝑀𝑆𝐸 1.53 1.42 4.28

In the right side and center of Fig. 11 a, there is an almost-perfect 
normal distribution. The tails, particularly those on the left, show large 
departures from the normal distribution; the histogram, Fig. 11 b, shows 
that the distribution on the left is right-skewed. These departures could 
be related to the uncertainty in the SAR dataset, as well as atmospheric 
delay and acquisition time. The (Δ𝑑𝑇𝑆𝑋−𝑆1) before and after integra-

tion were compared and described by box plots as shown in Fig. 12. 
Fig. 12 demonstrates that the distribution is biased toward lower values 
and the mean is more positive than the median, as shown by the boxplot 
graph, which will automatically identify the min/max range, 75 per-

cent quantile range, mean value, and outliers. The 𝑅𝑀𝑆𝐸 values are 
8.72 and 6.62, and the standard deviations are 4.99 and 3.78 mm/year 
before and after integration, respectively. After using the ML-based in-

tegration method, the results have shown a greater improvement.

Second, a quantitative study of the differences between the displace-

ment velocities obtained before and after SVM-based integration, as 
shown in Table 5, was applied to validate integration-derived displace-

ment for each dataset (TSX, CSK, S1) separately. Fig. 13 represents a 
comparison of the differences in measured displacement velocities of 
the three datasets’ boxplots.

Mean, median, 𝑅𝑀𝑆𝐸, and standard deviation of the displacement 
velocity differences were listed in Table 5. TSX provides a lower mean 
difference than the S1 and CSK, with values of 0.97, 1.19, and 3.61 
6

mm/year, respectively. In addition, when compared to CSK and S1, 
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Table 6

Standard deviations and 𝑅𝑀𝑆𝐸 of the differences between the three 
frame datasets before and after integration.

Evaluation index/ Frames
67-68 68-69 69-70

Pre Post Pre Post Pre Post

Mean 4.52 1.21 6.80 1.70 7.99 1.29

Median 3.98 1.14 5.12 1.44 6.60 0.76

STD 3.30 0.75 5.91 1.54 6.58 1.60

𝑅𝑀𝑆𝐸 5.60 1.43 9.02 2.29 10.35 2.05

TSX has the best standard deviation and 𝑅𝑀𝑆𝐸 values. These 𝑅𝑀𝑆𝐸
values elucidate that the TSX results were better than the CSK and 
S1 results. This could be attributed to the larger number of TSX in-

terferograms involved in the integration process than the number of 
interferograms involved with CSK and S1.

Third, the results from different S1 datasets generated from different 
frames were cross-validated as (Ng et al., 2012; Jiang and Lin, 2010) to 
study the effect of the SVM-based integration on the relation between 
different frames of S1 datasets as in Table 6. The standard deviations 
and 𝑅𝑀𝑆𝐸 of the differences between the three frame datasets before 
and after integration are determined.

The 𝑅𝑀𝑆𝐸 values are 5.60, 9.02, 10.35, and 1.43, 2.29, 2.05, 
and the standard deviations are 3.30, 5.91, 6.58, and 0.75, 1.54, 1.60 
mm/year before and after integration, respectively, demonstrating ex-

cellent improvements among the results after applying the ML-based 
integration method.

5. Discussion

5.1. SVM for multi-sensor SAR data integration

The proposed framework depends mainly on SVR to integrate multi-

satellite SAR data. SVR is based on statistical learning theory and has 
the following characteristics: (1) a learning method derived from the 
structural risk reduction principle governs the trade-off between regres-

sion accuracy and regression hyperplane complexity; (2) it converts 
actual problems into a high-dimensional feature space, allowing non-

linear aspects to be represented using linear operators; (3) model can 
be solved using convex quadratic programming, with the global op-

timal solution theoretically preserved; (4) and the formulation of the 
load regression function is defined by only a few support vectors rather 
than the full sample set overcoming the dimensionality curse (Liu et 
al., 2021). Our proposed method is post-processing, therefore it does 
not necessitate handling hundreds of differential SAR interferograms si-
multaneously and it exploits the technological advancements made in 
the creation of LOS in recent years. Integration of multi-satellite defor-

mation components is mainly affected by information on the quality of 
LOS displacement and the determination of very coherent targets com-

mon to all datasets. Any disturbance in the LOS displacement can be 
estimated and filtered before integration preventing error propagation 
during integration. Our experimental results showed that ML has poten-

tially performed while the integrated displacements are determined to 
sub-millimeter-level precision which is comparable to those from LOS 
displacements. Accordingly, the proposed method is expected to per-

form well in investigating geological and geophysical processes where 
deformation discrimination is a major concern.

5.2. Land subsidence based on multi-sensor SAR data

Currently, there is an increasing number of satellite data vendors. 
This includes the latest C, X, and L-band SAR imagery from SAR sensors 
(such as RADARSAT-2, Sentinel-1A, ALOS-2, TerraSAR-X, Tandem-X, 
and the COSMO-SkyMed constellation) as well as SAR sensors (such as 
ENVISAT and ERS). Therefore, it becomes possible to track the ongoing 

surface displacements from a regional level to small structures. In this 
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Fig. 8. AAD maps of Kowloon. (a) TSX. (b) CSK. (c) Sentinel-1A.
Fig. 9. Combined AAD map resulted from SVM-based integration of TSX, CSK, 
and S1 datasets.

paper, three separate SAR datasets, the TSX, CSK, and S1, were utilized 
to study long-term ground subsidence. From the band point of view, 
C-band has a superior ability to monitor displacement whereas shorter 
wavelength and lower frequency bands (e.g., x-band) allow for more 
comprehensive coverage of natural regions and less temporal decor-

relation. These satellites capture data over a lengthy period of time, 
allowing us to track long-term deformation. The utilization of an uneven 
number of images and varying imaging properties make assessing their 
performance challenging. Even though, the short revisit period of TSX 
and S1 enabled the observation of short-term land deformations due 
to human activities. Moreover, the overlap between the three datasets 
encouraged the integration of multi-sensor InSAR results. Further, the 
cross-heading tracks of the TSX and CSK images identified deformation 
7

on both sides, implying that the cross-heading tracks facilitated thor-
Fig. 10. Scatter map of AAD pre and post SVM-based integration.

ough displacement determination in the research area. In conclusion, 
the combined multi-sensor SAR data illustrates the feasibility of contin-

uous deformation surveillance.

5.3. Local reclamation settlement, possible causes, and implications

The three mechanisms that cause natural consolidation of reclama-

tion fills are (a) primary consolidation (3 years after reclamation); (b) 
long-term second compression of the alluvial clay deposits beneath the 
reclamation; (c) creep within the reclamation fill (over 40 years after 
reclamation). As per Ma et al. (2019), fill variability impacts consolida-
tion variability and creates unequal settlement. Ground deformation is 
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Fig. 11. Quantile-quantile (q-q) plot and histogram of Δ𝑑 from 2015 to 2017.
Fig. 12. Box-plots of (Δ𝑑𝑇𝑆𝑋−𝑆1) before and after applying the SVM-based in-

tegration method.

discovered by examining geological formations (see Fig. 2) and human 
activities that always reinforce each other. The study area is formed of 
granites, alluvium/colluvium, and reclamation land. Granite is a type 
of intrusive igneous rock that is known for being a relatively stable 
stratum whereas surrounding reclaimed land is less stable. Preceding 
research has revealed ground displacement on reclaimed land in var-

ious locations of Hong Kong (Ding et al., 2004). For instance, human 
activities, (e.g., the vast underground train system in the west corridor) 
represent a reason for ground displacement. Also, sinking and building 
cracks have been reported by Qin and Perissin (2015). Therefore, the 
interaction between the geological structure and subterranean projects 
is most likely to blame for the concentrated ground displacement in this 
location. Long-term large-scale subsidence increases the risk of flooding 
and saltwater intrusion as sea levels rise (Dang et al., 2018). Build-

ings and infrastructures are being threatened by small-scale subsidence 
which poses a greater hazard to humans than regional sediment sub-

sidence. The reason is it occurs frequently in densely populated places 
and its vast dispersion, invisibility, rapid occurrence, and complex cre-

ation (Ma et al., 2019). Local governments are becoming increasingly 
8

concerned about the considerable impact of small-scale subsidence.
𝑇𝑆𝑋−𝑆1

Fig. 13. Box plots of the difference between AAD from TSX, CSK, and S1 before 
and after the SVM-based integration.

On the other hand, validation showed that the developed approach 
recorded sub-millimeter-level accuracy in integrating multi-satellite 
SAR datasets. It enables the one-by-one integration of interferograms 
(from different sensors and viewing orientations as they become avail-

able) resulting in 1-D displacements at each SAR interferogram time. An 
essential advantage of the developed approach is achieving significantly 
higher observation resolution by combining measurements from various 
radar sensors. Therefore, the multi-satellite SAR-ML-based integration 
method is expected to be effective in analyzing geological and geophys-

ical processes however, in-depth evaluations are required to clarify and 
evaluate the proposed method’s potential. This necessitates the utiliza-

tion of a similar number of images from each SAR satellite data testing 
the developed approach in various situations. Moreover, utilizing multi-

platform SAR data to retrieve a multi-dimensional deformation map 
to monitor deformation anomalies. Further, the developed methodol-

ogy preserves TerraSAR-X’s and COSMO-SkyMed’s high resolution and 
Sentinel-1’s better monitoring ability while also decreasing the moni-

toring cycle. Furthermore, Hong Kong’s Kowloon district is one of the 

city’s most populous. Consequently, the achieved results produced are 
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a valuable resource for disaster prevention, and widespread planning, 
urbanization, and land reclamation in this region.

6. Conclusions

This research proposed a novel framework to integrate multi-sensor, 
multi-track DInSAR measurements using an ML strategy. The experi-

mental results showed that the deformation rates of the Kowloon district 
range from - 12.86 to 11.63 mm/year. Moreover, the trends of dis-

placement in the west corridor were more than 5 mm/year due to the 
reclamation of land and the ongoing underground/ground construc-

tion projects. Owing to RMSE the SVR-based integration reported a 
sub-millimeter level of accuracy where the RMSE was 1.12 mm/year. 
Therefore, the proposed framework has potentially performed on multi-

satellite SAR data integration due to one-by-one interferogram integra-

tion however, in-depth evaluations are required to clarify and evaluate 
the proposed method’s potential. Moreover, an additional sort of mea-

surement (GPS, leveling) should be used to assess, calibrate, and evalu-

ate the proposed developed framework.
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